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ABSTRACT 

This paper shows that partial differential equations may 

be a possible area of application of mathematical programming. 

The solution of Laplace's equation with Neumann's condition is 

shown to be a minimum cost network flow problem with cost pro- 

portional to the arc flow.    An algorithm of solving minimum 

quadratic cost network flow is given. 



I.    Introduct i jr : 

The purpose of this paper  is to present a new numerical 

method for Sü-vinja Laplace's eciation will; Neumann's condition 

prescribed en the boundary.    This method uaea the idea in the 

theory of network lews whicn 1= a branch of mathematical program- 

ming .isuall/ crr.iidered to hs unrelated to the subject of partial 

differential equa*icne     For  s^mpltcity of exposition we shaV. dis- 

cuss the case in two dirnen^icrs       The  genera hzaticn tc  three dimen- 

sions is oüvicas 

Consider a simply-crnn^cted dorr_c»in G in the plane whose 

boundary F is a E-.T.ple closed curve We are interested in find- 

ing the solution cf 

(1) V24>       C in     G 

. ,       86 .,    , ^ d6 
with     -K^-     as prescibed or     I     ,   where    •*—     ■     ^, 1  J     • on r on     le the normal deriva- 

tive of     4>     ronsioerrd to be positise if     <}>    decreases its value 

across the h'^r.dary from, the ou^^ide regier  to     C- In order to 

have a unique so.uticn,  it is necessary and sufficient to prescribe 

d<t> 
■K-^     on     F     such that \ha ^.ne mieerai 
9n s 

r 
This prob.em ariQes .'o.-r; TTiany problems of mathematical 

physics; we shaiA only fcive the physical interpretation from the point 

of view of fluid mechanics      We consider ihic? problem as that of in- 

compressible irrotationa1 flow    and thus   v^     is the velocity of the 

flow where     -*-     on    F    i^ influx or outflux of the liquid across the on 



boundary where (i) is the equation of contiruitv     Since there is no 

source or sink inside     C    ,  {I) expresses the condition that the 

total inflow mast eqaa. the total outflow.     We shall call the parts of 

r    for which    -rr^     are positive    hne sources,  and the part of     F 
op 

3$ 
Tn for which     -^--     are nega*ive,   line sinks. 

The usual nume'i'.ai method is to replace differential equation 

(1) by difference equatior. Wifh unifor-n or  non-uniform grids,   and 

then calculate :he value o(. th? function at the discrete points where 

the spacing betwetn gr*^ mes is deternnined by the degree of accu- 

racy de sir ed. 

For a ncn-uniform lertangular grid (see Fig.l) ,   the differ- 

ence equat'cn icr the Laplace's  »qaation at point     P     becomes 

4>E - <Pp <Pp ■■ <\>w 4>N - 4>p 4>p - 4>s 

(3)       ^E^     " -vJV"^ + V^'^   " W^   =   0 

F ig . 



4>E - ^p 
Denoting     f,^^  =  r—rr r—r     ,   etc • , we can rewrite (3) as EP       hE{hE + hw) 

(4) fEP * fpW + fNP ' fPS   =  0    • 

If we consider the equation at the point    S   ,   using this notation,  we 

also have 

ps ''   h^s + S1 ' 
Since h ^ hT in general, the symbol /_„ etc. , seems to be 

not uniquely defined. We shall first assume that all h's are equal 

and then discuss the non-uniform grid case later. For the case, all 

h's are equal, and the f.. are just the differences between func- 

tions at points divided by 2h and are uniquely defined. Equation 

(4) suggests a strong analogy between the difference equation and the 

physical model of water flowing in pipes. 

We shall now consider a physical model for the grid system to 

be a network.    The boundary value problem of a network has already 

been discussed in Duffin [ 8]  and Birckhoff and Diaz [ 2] .    As usually 

done in the theory of network flows (see the most complete descrip- 

tion by Ford and Fulkerson [ 9] ) we consider a network which con- 

sists of nodes     N.     and arcs     B..     connecting    N.     and    N.   . 
i ij i J 

The value of the flow from     N.     to     N.    along the arc      B..     is de- 

noted by     f..     and we have     f,.  s -f.. 

The conservation of liquid at a node     N.     is expressed by the 

equation 

(6) ){..   - Yf, . = 0      for all     i * s.t. 

J k 
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where     f .   >   0     and    f, .   >  0    . 
'J  — ki — 

If a node     N       is a source node of strength     v    ,   we have s 0 

J 

and for a sink node     K      of strength     v   ,  we have 

(8) h<- 
We have now replaced a continuous domain by a discrete net- 

work with line sources on    F    replaced by source nodes,  and line 

sinks by s,nk nodes.    The strength of a source representing a short 

line source     y     is determined by 

(9) v  =   \   ^ ds 

and similarly for a short line sink.    In the following discussion,  we 

shall assume that there is only one source node and one sink node. 

The reader familiar with network flow problems or problems 

of operations research will suspect that this problem becomes a 

minimum cost flow problem [ 9]  or that of Hitchcock transportation 

problem [1Z]  with the sources as  supplies and sinks as demands. 

But this is not a standard minimum cost flow problem,   as shown 

later.    For one thing,   the network with infinity branch capacities 

can have many minimum cost flow patterns in the network if the cost 

is defined to be proportional to distance,  where the solution of 

Laplace's equation is known to be unique. 

-  4 



II.    Netv/ork Formulation: 

To solve this question,  we now turn to Dirchlet's principle 

(see the book by Courant [5]) .    The Dirchlet integral of a function 

g     defined on     G     is given by 

(10; Dig]   :-. j£ ;g^ + g^ dx dy   . 

where     g       denotes the partial derivative of    g     wi:h respect to 

x   ,   simüarly fcr     g 

Now we quote from Courant [5]   . 

Dirchlet's principle:   Given a domain    G     whose boundary     I     con- 

sists of Jordan curves.    Let     g     be a function continuous in    G + F   , 

piecewise smooth in     G    ,   and with finite Dirchlet integral    D[g] 

Consider  the ciäss of all functions     4>    continuous in     G + F   , 

piecewise smooth in     G   ,   and having the same boundary values as 

g    .     Then the probJ^m of finding a function     4>     for which     D[4>] 

attains a rmnirr-am.     d     ha s a unique solution     4> - u This func 

tion     u     is the  bc.'.ution of the boundary value problem fcr    V   u -  0 

wuh thf prescribed boundary value     g     on     F   . 

Dirchlet's principle is certainly correct if in the boundary 

value frob.-m,   ihe normal derivative of     g     is prescribed instead 

of     c The finite ana'ogy of (10) for a discrete network is then 

(hw + hir)hNT      / 4.M - 4)D N^ 
di) D[4>]     ■ jS 

W        E'  N      f  YN      TP 

N . P. 1N 

(The classical approach is to differentiate (11) with respect to     $ 

and solve the  simul'.aneous linear equations thus obtained  ) 



For the case   all    h - 1   ,   we have 

{\Z) DM   =  D[ii}]   = 7 ^  ffj    ■ 

i.j 

So the network problem becomes that of minimizing (1Z)   sub- 

jected to the condition (6) (7) (8)  .   This is a mathematical program- 

ming problem with linear constraints and non-linear objective 

function (12) .    With the solution space being convex and the objec- 

tive function quadratic (see for example   [16]),   relative minimum in 

the solution spare implies absolute minimum.    Furthermore,   the 

solution is unique. 

Instead of solving the problem as a quadratic programming 

one,   we shall develop a network flow method.    For convenience,  we 

assume that a scale system is chosen such that the strength of    N 

and of     N       are very large integers and "one" is the smallest posi- 

tive constant. 

Let us define the cost     c.       of shipping one unit of flow from 

N.     to     N       as 
i J 

(13) 

This problem is now a minimum cost flow problem with the cost of 

shipping along an arc depending on the direction and the amount of 

flow in that arc 

We are interested in the flow pattern which satisfies the sup- 

ply and demand conditions as defined by (6) (7) and (8) with the total 

cost 

_  6 - 

c..   = 
r f.. 

1 lJ 
if f..   >  0 

ij - 
1J l-f.. 

Jl 
if f..   >  0    . 

Ji 



(14) D   -Sc..(..-){Z. 

a minimum.    Let us call this minimum cost flow pattern the 

optimum flow pattern. 

Clearly,   in this optimum flow pattern,   if a set of arcs 

B.,, B,,,..., B form a cycle,   then we cannot have il      12 mi , 

f.,,^.,   ...,{ all positive.    Otherwise we can subtract from il    12 mi r 

each arc the amount    Ö = min (f.,, f,.,,..., f    .)  > 0   ,  with (6) il     12 mi 

(7) and (8) still satisfied,  but with the value of {J4) reduced.    Thio 

is no surprise as we know from the continuous case,  the solution 

of Laplace's equation represents irrotational flow.    This will be 

called the condition of no circulation. 

Consider now the case for which there is a cycle formed by 

arcs in which we pick a node    N.     and a node    N.    .    Let us con- 
i J 

sider the flows     f.,, f, , f in the fir st path and the flows il     12 mj r 

^-11 » ^ii   ->!  . • • • i f    i •     in the second path.    Note these arc flows il1      1', 2' m'j r 

may be positive or negative.    Then we must have 

us)        I'irlii- 
where the left side represents the marginal cost of shipping one 

unit of flow along the first path,  and the right-hand side represents 

the marginal cost of shipping along the second path.    If (15) is not 

true,  we can ship one unit along the cheaper path and go back on the 

more expensive path.    This will make (6) (7) and (8) all satisfied 

but make (14) reduced. 

7 - 



We can now state the algorithm of constructing the optimum 

f!ow pattern      This algorithm is  similar to the algorithm used in 

[3] ,   [9]  and [15]   for  constructing minimum cost flow where the 

cost is the same as the length of the arc  or  as its negative 

Let us define the cost of a path from     N       to     N      as the sum 
s t 

of costs of arcs travelling along that direction. 

- 8  - 



III.       The Method and its Proof: 

This algorithm can be described as follows.     Assume that we 

have  sent     i     units ol flow from     N        to     N   (i  - 0   i, . . .    v^    . s t ' 

Step 1:   Find the cheapest path from     N       to     N      with the 

costs of arcs defined by (13V    Let the path cost hi.     C. (i.e.     the 

th cost of '.he     {'.+ 1.' path). 

Step 2;   If     C.  :• C    .  M    ,   go to Step 3.    If     C. = C.   . = C 
 ~— 11 + 1 llri 

or     C.   <  C.   ,    ,   send one unit of flow from     N        to     N      alone i i+l s t & 

the cheapest path.    Redefine the costs of arcs on the path.    Gc back 

to Step 1. 

Step 3:    Let     f ,      be the arc flow from     N.     to     N,     ,   then  £— jk j k 

There exist many papers about the algorithm of finding the 

cheapest path {or the shortest path).    We shall only mention the 

first paper on this subject by Ford [9] ,   the later modification by 

Dantzig [7] ,   the matrix formulation by Berge [l] ,   and the case of 

many sources and many  sinks to the technique by Gomory and Hu 

[HI 

We shali sav     N       covers     N.     if there is a positive flow     f.. 
i J ij 

from     N.      to     N. Since there is no circulation in the flow pat- 

tern,   we can ronsider  the set of all nodes to be partially ordered. 

For the network wi^h its nodes partially ordered by its flow pattern 

we can also find the most expensive path (without cycles) from     N 

to     N       (see ior   example [9l)-     For the optimum flow pattern,   the 

costs of the most expensive path and the cheapest path shoaid be 
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equal. 

First we prove that this algorithm does give a flow pattern in 

which costs of all flow paths are equal.    Assume that there are two 

paths     P.     and     P,     with the cost     C (P.)   <  C (P?)    •    In sending 

the last unit flow along     P,    .  we are not using the cheapest path    P. 

contradictory to the assumption that we always use the cheapest path. 

Second,  we prove that when costs of all paths are equal,   the 

optimum solution is obtained     Assume that there is an optimum 

solution with the flow pattern different from that obtained by the algo- 

rithm     Assume the path cost of the pattern obtained by the algorithm 

is     C(h)     and that of the optimum solution is     C (C) 

Since it is neceFsary for an optimum solution to have all paths 

the same cost,   if the optimum solution is not obtained by this 

algorithm    it must have all paths the same cost with     C (0)  <  C (h) . 

Consider  in the stage of the algorithm for which we have shipped 

v - 1     units of flows      Then we could send the last unit along a path 

with cost     C (0]'     and reduce the total cost      Since this,   by assump- 

tion,   is not possible,   this means the     Zf..     in the path is greater 

than     Z f.       in that oath and also for any part of the path.    This 
ij 

means     f. . > f If this is true for all paths,   since optimum so- 

lution gives     v     units,   then by (7) this means we have shipped more 

than     v     units of flow,   contradiction. 

In order to speed up the convergence of this algorithm,   lots of 

rules can be given for sending flows from the source to the sink 

when there are many arcs with     f.    - 0     in the arcs.     We shall not 

10 - 



discuss such rules here. 

The case of many sources of strength     v.     and many sinks oi 

strength     v.      can be taken care of as usually done in network flows 

Also,  an upper bound on the number of steps to solve this problem 

can be given (see [15]). 

- 11 - 



IV.     Examples: 

Consider Fig.   I where it is assumed that     f,   _ = 8    , 

f,,   ,,-  = 8     and    -*-£   -  0     everywhere else,  and     h = 1   . 
il, 15 9n 7 

According to the algorithm,  we first send 

Step 1: The cheapest path from     N^     to     N.^     costs zero. 

(As     f3   7 - f7   11 = i^  ^ ^ 0     initially.) 

Step 2-   Send one unit of flow along the path.    Now 

c3> 7 " c7,ll = Cll,15 " i     and     C7.3 " Cll17 
= C15,ll " ^   ' 

Step).    The cheapest path from    N,     to     N1t.     costs now   Z 

as     c3> 7 = 1  .   c6i 7   = 0   •   c6i 10 = 0   .  c10( 11 = 0   .   c11) 15 = 1   . 

Step Z.   c^ = 0  <  c.  = 2 Send one unit of flow along the arc 

B3.7   ■   B7,6  '   B6.10   '  B10,ll    and     B11.15   •    Now    ^.T"2   ' 

c7, II = 1   '  C1I, 15 = Z   '  c7, 6 = 1   '  c6,10 r 1  '  CI0. II = 1   ' 

By this algorithm,   we will send two more units along the path 

B3, 7   '   B7. 11  '   BII, 15     Wlth     C3. 7 = 4   '   C7, II = 3   '   CI1, 15 = 4    ' 

C7.6 ^   '  C6.I0 r l   '  "lO.U^1    With    C4 =8 

Then    C.  = 8 = Cj.  ^ 0    .    We would go to Step 3 and obtain 

the differences between functions. 

2 8 
For example,    $1 - c^.,  = 2 •  I    •  3 •(-,)= 12 

The     f..     are shown in Fie.   3    . 

12 
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Le*  JLS coriSidex  ar.o'.hei   example.    A special example such 

that bv very simple c onsidei ation,   no iteration or solution of 

simaitaneo^s equations is necessary. 

Consider   Fig. 4 where we assume that all normal derivatives 

are zero except that we  have     -5—  =   14     at     N,     and    -^   =   -14     at r on 1 9n 

N , Due cc the syrr.mt*.ry oi this configuration,   we can only con- 

sider  the pciats     N N ^       N,   .   N.    .   N,    and   N. 

Assume the amount of How from     N .      to     N.      is     x 4 6 

Then from the : onsid*: a'ior. ol i.ow at     N,        we have   (.,   -i,,,  = x. 6 46        64' 

Also,   t.r     ani     i-4i     c.rt equal by symmetry      Furthermore, 

t,,:  + iz*     -t-AL+it-A otherwise a reduction in cost can be a- 45        54 4fc        64 

chieved.     Thereioie      i.,   ~iC/<,  -x Clearly     f, . - f. . + f . r = 2x , 45       34' 7       24      46      45 

and from symmetry and the equal path cost condition 

f23 ^35 ni,:i24 + W  ^       Tr.is will make   ilz-in^z4 = 

lä+ Zx = -$  .      With     ^   --  14   --  i.. + {^.  = 7*.        We let     x = 2 
2 2 9n i2        I*: 

and get the differences between ali pioints as shown in Fig. 5. 

.4   ■ 
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V.     Discussion; 

A few comments ai e in order. 

1. This paper treats the Laplace's equation from the point of 

view of mathematical programming.    The potentials at nodes are 

dual variab.t.s tc the :.c.ws in arcs,   and th«-y play the same rclt as 

prices in the •ang.iags- c* urear  pr ogr am.mir.g 

2. For  Poisson s equation    y 4* - vvx, y'    ,   the same inter - 

pretation of irrctanonal incompressible flow with sources and  sinks 

on the boundary and inside the region     G     can be given.     The 

Dirchlet integral    S    should be replaced by 

(T .   2 Z 
M   ^    + 4>    + 2v Jx, y#. <{)) dx dy    . 

And the condition   Z', on the boundary should be replaced by 

I TC—   ds -f   \\ vix.y' dx dy  - 0 

Although a variationai formulation of a general el.'iptic 

partial differential ecuation of second order  is possib'c.  whether  the 

method presented h^re is applicable is unknown 

3 For Dir   h.et  s condition prescribed en the boundary,   we 

have just the same number   of unknowns as the number  of equations 

The same is true lor  Neumann's condition it we iix     <\>     at one point. 

If we introduce     f        as variables,   then we double the number   of 

unknowns      The solution will not be unique unless we use the 

Dirchiet's integral as the objective function 

4 The riftwoiK used in the theory of network flows is quite 

17 



arbitrary      Here the network is quite regular and there is no 

capacity constraints on the arcs.    A better numerical method can be 

deveiop^d special-.y for  this kind of network.    Also the unimodular 

property »see for example [4]   and [14] ; of the incidence matrix 

describing the  r.etwcrK gives certain insight to the network flow 

problem       This may plav an importart role in further development 

a'ong the une  of rht- numexi^al methods. 

5       When the grids are not uniform,  we have 

PS ^c-^o    +-^-r.f b     b i 

Thii> makes the flow in an arc not unique     But this can be taken care 

of by mtroducirg a mutiplier   on the arc from    N^     to     N^   . 

This muitiPiifT  dsptnds only on the geometrical configuration of 

the grid.      The paper  >: y   Jeweii [J4]   on networks with gains can be 

applied      Fight now,   le-w papers have been written on networks with 

gains. 
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